Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(4): 106308, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36942051

RESUMO

Phenotypic dimorphism between queens and workers is an important biological characteristic of honeybees that has been the subject of intensive research. The enormous differences in morphology, lifespan, physiology, and behavior between queens and workers are caused by a complicated set of factors. Epigenetic modifications are considered to play an important role in this process. In this study, we analyzed the differences in chromosome interactions and H3K27ac and H3K4me1 modifications between the queens and workers using high-throughput chromosome conformation capture (Hi-C) and Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) technologies. We found that the queens contain more chromosome interactions and more unique H3K27ac modifications than workers; in contrast, workers have more H3K4me1 modifications than queens. Moreover, we identified Map3k15 as a potential caste gene in queen-worker differentiation. Our results suggest that chromosomal conformation and H3K27ac and H3K4me1 modifications are involved in regulating queen-worker differentiation, which reveals that the queen-worker phenotypic dimorphism is regulated by multiple epigenetic modifications.

2.
Insect Biochem Mol Biol ; 155: 103929, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906046

RESUMO

The role of the epigenome in phenotypic plasticity is unclear presently. Here we used a multiomics approach to explore the nature of the epigenome in developing honey bee (Apis mellifera) workers and queens. Our data clearly showed distinct queen and worker epigenomic landscapes during the developmental process. Differences in gene expression between workers and queens become more extensive and more layered during the process of development. Genes known to be important for caste differentiation were more likely to be regulated by multiple epigenomic systems than other differentially expressed genes. We confirmed the importance of two candidate genes for caste differentiation by using RNAi to manipulate the expression of two genes that differed in expression between workers and queens were regulated by multiple epigenomic systems. For both genes the RNAi manipulation resulted in a decrease in weight and fewer ovarioles of newly emerged queens compared to controls. Our data show that the distinct epigenomic landscapes of worker and queen bees differentiate during the course of larval development.


Assuntos
Epigenômica , Multiômica , Abelhas/genética , Animais , Larva/genética
3.
Front Physiol ; 14: 1073625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776963

RESUMO

Background and aims: The Asian honeybee (Apis cerana) and the European honeybee (Apis mellifera) are reproductively isolated. Previous studies reported that exchanging the larval food between the two species, known as nutritional crossbreeding, resulted in obvious changes in morphology, physiology and behavior. This study explored the molecular mechanisms underlying the honeybee nutritional crossbreeding. Methods: This study used full nutritional crossbreeding technology to rear A. cerana queens by feeding them with an A. mellifera royal jelly-based diet in an incubator. The body color and the expression of certain genes, microRNA, lncRNA, and circRNA among nutritional crossbred A. cerana queens (NQ), and control A. cerana queens (CQ) were compared. The biological functions of two target genes, TPH1 and KMO, were verified using RNA interference. Results: Our results showed that the NQ's body color turned yellow compared to the black control queens. Whole transcriptome sequencing results showed that a total of 1484, 311, 92, and 169 DEGs, DElncRNAs, DEmiRNAs, and DEcircRNAs, respectively, were identified in NQ and CQ, in which seven DEGs were enriched for three key pathways (tryptophan, tyrosine, and dopamine) involved in melanin synthesis. Interestingly, eight DElncRNAs and three DEmiRNAs were enriched into the key pathways regulating the above key DEGs. No circRNAs were enriched into these key pathways. Knocking down two key genes (KMO and TPH1) resulted in altered body color, suggesting that feeding NQ's an RNAi-based diet significantly downregulated the expression of TPH1 and KMO in 4-day-old larvae, which confirmed the function of key DEGs in the regulation of honeybee body color. Conclusion: These findings reveal that the larval diets from A. mellifera could change the body color of A. cerana, perhaps by altering the expression of non-coding RNAs and related key genes. This study serves as a model of epigenetic regulation in insect body color induced by environmental factors.

4.
Life (Basel) ; 12(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295077

RESUMO

The technology of long reads substantially improved the contingency of the genome assembly, particularly resolving contiguity of the repetitive regions. By integrating the interactive fragment using Hi-C, and the HiFi technique, a solid genome of the honeybee Apis mellifera carnica was assembled at the chromosomal level. A distinctive pattern of genes involved in social evolution was found by comparing it with social and solitary bees. A positive selection was identified in genes involved with cold tolerance, which likely underlies the adaptation of this European honeybee subspecies in the north hemisphere. The availability of this new high-quality genome will foster further studies and advances on genome variation during subspeciation, honeybee breeding and comparative genomics.

5.
Naturwissenschaften ; 109(3): 30, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35643865

RESUMO

Volatile odors from flowers play an important role in plant-pollinator interaction. The honeybee is an important generalist pollinator of many plants. Here, we explored whether any components of the odors of a range of honeybee-pollinated plants are commonly involved in the interaction between plants and honeybees. We used a needle trap system to collect floral odors, and GC-MS analysis revealed nonanal was the only component scent detected in 12 different honeybee-pollinated flowers and not present in anemophilous plant species. For Ligustrum compactum, blooming flowers released significantly more nonanal than buds and faded flowers. For Sapium sebiferum, nonanal release through the day correlated with nectar secretion. Experimentally increasing nectar load in flowers of Sapium sebiferum, Ligustrum compactum, and Castanea henryi increased nonanal levels also. Nonanal was also detected in flower nectar and honeys from experimental colonies. Electroantennogram recordings and behavioral observations showed that untrained honeybees could detect and were strongly attracted to nonanal. We argue that nonanal persists in both honey and nectar odors facilitating a learned association between nonanal and food reward in honeybees.


Assuntos
Odorantes , Néctar de Plantas , Animais , Abelhas , Flores , Feromônios , Plantas , Polinização
6.
iScience ; 25(5): 104301, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573188

RESUMO

The distinct honeybee (Apis mellifera) worker and queen castes have become a model for the study of genomic mechanisms of phenotypic plasticity. Here we performed a nanopore-based direct RNA sequencing with exceptionally long reads to compare the mRNA transcripts between queen and workers at three points during their larval development. We found thousands of significantly differentially expressed transcript isoforms (DEIs) between queen and worker larvae. These DEIs were formatted by a flexible splicing system. We showed that poly(A) tails participated in this caste differentiation by negatively regulating the expression of DEIs. Hundreds of isoforms uniquely expressed in either queens or workers during their larval development, and isoforms were expressed at different points in queen and worker larval development demonstrating a dynamic relationship between isoform expression and developmental mechanisms. These findings show the full complexity of RNA processing and transcript expression in honey bee phenotypic plasticity.

7.
BMC Genomics ; 22(1): 699, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579651

RESUMO

BACKGROUND: Nutrition and cell size play an important role in the determination of caste differentiation in queen and worker of honeybees (Apis mellifera), whereas the haploid genome dominates the differentiation of drones. However, the effects of female developmental environment on the development of males remain unclear. In this study, young drone larvae were transferred into worker cells (WCs) or remained in drone cells (DCs) to rear drones. The drone larvae were also grafted into queen cells (QCs) for 48 h and then transplanted into drone cells until emerging. Morphological indexes and reproductive organs of these three types of newly emerged drones were measured. Newly emerged drones and third instar drone larvae from WCs, DCs and QCs were sequenced by RNA sequencing (RNA-Seq). RESULTS: The amount of food remaining in cells of the QC and WC groups was significantly different to that in the DC group at the early larval stage. Morphological results showed that newly emerged DC drones had bigger body sizes and more well-developed reproductive tissues than WC and QC drones, whereas the reproductive tissues of QC drones were larger than those of WC drones. Additionally, whole body gene expression results showed a clear difference among three groups. At larval stage there were 889, 1761 and 1927 significantly differentially expressed genes (DEGs) in WC/DC, QC/DC and WC/QC comparisons, respectively. The number of DEGs decreased in adult drones of these three comparisons [678 (WC/DC), 338 (QC/DC) and 518 (WC/QC)]. A high number of DEGs were involved in sex differentiation, growth, olfaction, vision, mammalian target of rapamycin (mTOR), Wnt signaling pathways, and other processes. CONCLUSIONS: This study demonstrated that the developmental environment of honeybee females can delay male development, which may serve as a model for understanding the regulation of sex differentiation and male development in social insects by environmental factors.


Assuntos
Diferenciação Sexual , Olfato , Animais , Abelhas/genética , Feminino , Haploidia , Larva/genética , Masculino , Análise de Sequência de RNA
8.
Insect Biochem Mol Biol ; 127: 103476, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053387

RESUMO

Whether a female honey bee (Apis mellifera) develops into a worker or a queen depends on her nutrition during development, which changes the epigenome to alter the developmental trajectory. Beekeepers typically exploit this developmental plasticity to produce queen bee by transplanting worker larvae into queen cells to be reared as queens, thus redirecting a worker developmental pathway to a queen developmental pathway. We studied the consequences of this manipulation for the queen phenotype and methylome over four generations. Queens reared from worker larvae consistently had fewer ovarioles than queens reared from eggs. Over four generations the methylomes of lines of queens reared from eggs and worker larvae diverged, accumulating increasing differences in exons of genes related to caste differentiation, growth and immunity. We discuss the consequences of these cryptic changes to the honey bee epigenome for the health and viability of honey bee stocks.


Assuntos
Abelhas/genética , Epigenoma/genética , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/imunologia , Epigênese Genética , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , Óvulo
9.
Curr Biol ; 29(13): 2208-2213.e3, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31231048

RESUMO

Influences from the mother on offspring phenotype, known as maternal effects, are an important cause of adaptive phenotypic plasticity [1, 2]. Eusocial insects show dramatic phenotypic plasticity with morphologically distinct reproductive (queen) and worker castes [3, 4]. The dominant paradigm for honeybees (Apis mellifera) is that castes are environmentally rather than genetically determined, with the environment and diet of young larvae causing caste differentiation [5-9]. A role for maternal effects has not been considered, but here we show that egg size also influences queen development. Queens laid significantly bigger eggs in the larger queen cells than in the worker cells. Eggs laid in queen cells (QE), laid in worker cells (WE), and 2-day old larvae from worker cells (2L) were transferred to artificial queen cells to be reared as queens in a standardized environment. Newly emerged adult queens from QE were heavier than those from the other two groups and had more ovarioles, indicating a consequence of egg size for adult queen morphology. Gene expression analyses identified several significantly differentially expressed genes between newly emerged queens from QE and those from the other groups. These included a disproportionate number of genes involved in hormonal signaling, body development, and immune pathways, which are key traits differing between queens and workers. That egg size influences emerging queen morphology and physiology and that queens lay larger eggs in queen cells demonstrate both a maternal effect on the expression of the queen phenotype and a more active role for the queen in gyne production than has been realized previously.


Assuntos
Abelhas/fisiologia , Oviposição , Animais , Abelhas/genética , Feminino , Herança Materna , Óvulo/fisiologia , Fenótipo
10.
Sci Rep ; 9(1): 6778, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043647

RESUMO

Honey bee foragers must supply their colony with a balance of pollen and nectar to sustain optimal colony development. Inter-individual behavioural variability among foragers is observed in terms of activity levels and nectar vs. pollen collection, however the causes of such variation are still open questions. Here we explored the relationship between foraging activity and foraging performance in honey bees (Apis mellifera) by using an automated behaviour monitoring system to record mass on departing the hive, trip duration, presence of pollen on the hind legs and mass upon return to the hive, during the lifelong foraging career of individual bees. In our colonies, only a subset of foragers collected pollen, and no bee exclusively foraged for pollen. A minority of very active bees (19% of the foragers) performed 50% of the colony's total foraging trips, contributing to both pollen and nectar collection. Foraging performance (amount and rate of food collection) depended on bees' individual experience (amount of foraging trips completed). We argue that this reveals an important vulnerability for these social bees since environmental stressors that alter the activity and reduce the lifespan of foragers may prevent bees ever achieving maximal performance, thereby seriously compromising the effectiveness of the colony foraging force.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Comportamento Animal/fisiologia , Comportamento Alimentar/fisiologia , Voo Animal/fisiologia , Néctar de Plantas , Pólen/química , Animais , Longevidade
11.
Insect Sci ; 26(3): 499-509, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29110379

RESUMO

Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression.


Assuntos
Abelhas/genética , Transcriptoma , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Feminino , Perfilação da Expressão Gênica , Larva/metabolismo , Masculino , Análise de Sequência de RNA , Caracteres Sexuais , Predomínio Social
12.
Arch Environ Contam Toxicol ; 75(1): 59-65, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29423537

RESUMO

Pesticides are considered one of the major contemporary stressors of honey bee health. In this study, the effects of short-term exposure to lambda-cyhalothrin on lifespan, learning, and memory-related characteristics of Apis mellifera were systematically examined. Short-term exposure to lambda-cyhalothrin in worker bees reduced lifespan, affected learning and memory performance, reduced the homing ability, and influenced the expression levels of two learning and memory-related genes of A. mellifera. This research identifies the nature of the sublethal effects of lambda-cyhalothrin on bees and the level of exposure that can be harmful to bee health. This new information will assist in establishing guidelines for the safe use of lambda-cyhalothrin in the field.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Inseticidas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Animais , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Comportamento de Retorno ao Território Vital/efeitos dos fármacos , Inseticidas/administração & dosagem , Memória/efeitos dos fármacos , Memória/fisiologia , Nitrilas/administração & dosagem , Piretrinas/administração & dosagem , Taxa de Sobrevida
13.
Mol Ecol ; 26(6): 1598-1607, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28026884

RESUMO

Specialized castes are considered a key reason for the evolutionary and ecological success of the social insect lifestyle. The most essential caste distinction is between the fertile queen and the sterile workers. Honeybee (Apis mellifera) workers and queens are not genetically distinct, rather these different phenotypes are the result of epigenetically regulated divergent developmental pathways. This is an important phenomenon in understanding the evolution of social insect societies. Here, we studied the genomic regulation of the worker and queen developmental pathways, and the robustness of the pathways by transplanting eggs or young larvae to queen cells. Queens could be successfully reared from worker larvae transplanted up to 3 days age, but queens reared from older worker larvae had decreased queen body size and weight compared with queens from transplanted eggs. Gene expression analysis showed that queens raised from worker larvae differed from queens raised from eggs in the expression of genes involved in the immune system, caste differentiation, body development and longevity. DNA methylation levels were also higher in 3-day-old queen larvae raised from worker larvae compared with that raised from transplanted eggs identifying a possible mechanism stabilizing the two developmental paths. We propose that environmental (nutrition and space) changes induced by the commercial rearing practice result in a suboptimal queen phenotype via epigenetic processes, which may potentially contribute to the evolution of queen-worker dimorphism. This also has potentially contributed to the global increase in honeybee colony failure rates.


Assuntos
Abelhas/crescimento & desenvolvimento , Abelhas/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Metilação de DNA , Feminino , Larva , Óvulo , Fenótipo
14.
Sci Rep ; 6: 22359, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26924295

RESUMO

Cooperative brood care is diagnostic of animal societies. This is particularly true for the advanced social insects, and the honey bee is the best understood of the insect societies. A brood pheromone signaling the presence of larvae in a bee colony has been characterised and well studied, but here we explored whether honey bee larvae actively signal their food needs pheromonally to workers. We show that starving honey bee larvae signal to workers via increased production of the volatile pheromone E-ß-ocimene. Analysis of volatile pheromones produced by food-deprived and fed larvae with gas chromatography-mass spectrometry showed that starving larvae produced more E-ß-ocimene. Behavioural analyses showed that adding E-ß-ocimene to empty cells increased the number of worker visits to those cells, and similarly adding E-ß-ocimene to larvae increased worker visitation rate to the larvae. RNA-seq and qRT-PCR analysis identified 3 genes in the E-ß-ocimene biosynthetic pathway that were upregulated in larvae following 30 minutes of starvation, and these genes also upregulated in 2-day old larvae compared to 4-day old larvae (2-day old larvae produce the most E-ß-ocimene). This identifies a pheromonal mechanism by which brood can beg for food from workers to influence the allocation of resources within the colony.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Feromônios , Monoterpenos Acíclicos , Alcenos/metabolismo , Animais , Comportamento Animal , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica , Larva , Feromônios/genética , Feromônios/metabolismo , Inanição
16.
Ying Yong Sheng Tai Xue Bao ; 25(3): 831-5, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24984504

RESUMO

Honeybee foragers can flexibly adjust their out-hive activities to ensure growth and reproduction of the colony. In order to explore the characteristics of honey bees foraging behaviors, in this study, their flight activities were monitored 24 hours per day for a duration of 38 days, using an radio frequency identification (RFID) system designed and manufactured by the Honeybee Research Institute of Jiangxi Agricultural University in cooperation with the Guangzhou Invengo Information Technology Co., Ltd. Our results indicated that 63.4% and 64.5% of foragers were found rotating more than one day off during the foraging period in two colonies, and 22.5% and 26.4% of the total foraging days were used for rest respectively. Further, although the total foraging time between rotating day-off foragers and continuously working foragers was equal, the former had a significant longer lifespan than the latter. Additionally, the lifespan of the early developed foragers was significantly lower than that of the normally developed foragers. This study enriched the content of foraging behaviors of honey bees, and it could be used as the basis for the further explorations on evolutionary mechanism of foraging behaviors of eusocial insects.


Assuntos
Comportamento Apetitivo , Abelhas/fisiologia , Dispositivo de Identificação por Radiofrequência , Animais , Comportamento Animal , Comportamento Alimentar
17.
PLoS One ; 8(9): e73628, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040006

RESUMO

The honey bee has a well-organized system of division of labour among workers. Workers typically progress through a series of discrete behavioural castes as they age, and this has become an important case study for exploring how dynamic changes in gene expression can influence behaviour. Here we applied both digital gene expression analysis and methyl DNA immunoprecipitation analysis to nurse, forager and reverted nurse bees (nurses that have returned to the nursing state after a period spent foraging) from the same colony in order to compare the outcomes of these different forms of genomic analysis. A total of 874 and 710 significantly differentially expressed genes were identified in forager/nurse and reverted nurse/forager comparisons respectively. Of these, 229 genes exhibited reversed directions of gene expression differences between the forager/nurse and reverted nurse/forager comparisons. Using methyl-DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) we identified 366 and 442 significantly differentially methylated genes in forager/nurse and reverted nurse/forager comparisons respectively. Of these, 165 genes were identified as differentially methylated in both comparisons. However, very few genes were identified as both differentially expressed and differentially methylated in our comparisons of nurses and foragers. These findings confirm that changes in both gene expression and DNA methylation are involved in the nurse and forager behavioural castes, but the different analytical methods reveal quite distinct sets of candidate genes.


Assuntos
Abelhas/genética , Metilação de DNA , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Imunoprecipitação/métodos , Animais , Abelhas/fisiologia , Comportamento Animal , Feminino , Ontologia Genética , Genes de Insetos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-22922838

RESUMO

The honeybee is an excellent model organism for research on learning and memory among invertebrates. Learning and memory in honeybees has intrigued neuroscientists and entomologists in the last few decades, but attention has focused almost solely on the Western honeybee, Apis mellifera. In contrast, there have been few studies on learning and memory in the Eastern honeybee, Apis cerana. Here we report comparative behavioral data of color and grating learning and memory for A. cerana and A. mellifera in China, gathered using a Y-maze apparatus. We show for the first time that the learning and memory performance of A. cerana is significantly better on both color and grating patterns than that of A. mellifera. This study provides the first evidence of a learning and memory difference between A. cerana and A. mellifera under controlled conditions, and it is an important basis for the further study of the mechanism of learning and memory in honeybees.


Assuntos
Abelhas/classificação , Abelhas/fisiologia , Comportamento Animal/fisiologia , Animais , Aprendizagem/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...